
A new Seletion Sheme for Steady-State Evolution Strategies
J�urgen Wakunda and Andreas ZellUniversity of T�ubingen, Computer Siene Dept.K�ostlinstr. 6, D-72074 T�ubingen, Germanyfwakunda,zellg�informatik.uni-tuebingen.deAbstratIn this paper, a new seletion sheme for a(�+ 1) steady-state evolution strategy is de-sribed: the so-alled median seletion. Inontrast to generational algorithms, only oneindividual is generated and evaluated in onestep of the algorithm and is immediately inte-grated into the population. Previous steady-state algorithms are similar to the (�+�) se-letion sheme in evolution strategies, whihhas a disadvantage in the fast self-adaptationof mutation step-length. This is ompensatedby the presented median seletion, whih isoriented at the (�; �) seletion. The medianseletion is ompared with other steady-stateseletion shemes and with (�; �) seletion.As a result, median seletion ahieves bet-ter or equally good results as the other sele-tion shemes for a large number of benh-mark funtions. Additionally, it is shownthat the use of a sequential steady-state evo-lution strategy is advantageous even on one-proessor omputers.1 INTRODUCTIONEvolution Strategies (ES) were developed at the end ofthe sixties by Ingo Rehenberg and Hans-Paul Shwe-fel at the Tehnial University of Berlin [Rehenberg,1973, Shwefel, 1977℄. Sine then, they have been im-proved enormously in theory and pratie and havebeen established in the line of Evolutionary Algorithms(EA), beside Geneti Algorithms (GA), Geneti Pro-gramming (GP), Evolutionary Programming (EP) andsimilar methods.The main appliations of evolution strategies aremulti-dimensional, real-valued parameter optimization

problems. The most important property of ES is theability of self-adaptation. With self-adaptation thesize and distribution of mutations on the objet vari-ables are adapted at runtime and thus the optimizationspeed is maximized. Methods for self-adaptation arefor example the 1/5-suess-rule, mutative step on-trol [Rehenberg, 1994℄, \derandomized" step ontrol[Ostermeier et al. 1993℄ or the powerful ovarianematrix adaptation (CMA) [Hansen and Ostermeier,1996℄. The seletion method plays an important rolefor self-adaptation. In [Shwefel, 1992℄ it is shown,that regarding speed of self-adaptation, (�; �) sele-tion is superior to (�+ �) seletion (see next setion).The (�+1) Evolution Strategy was proposed early byRehenberg [Rehenberg, 1994℄, but nowadays is nolonger used beause there is missing a sheme for re-alizing self-adaptation [Rudolph, 1997℄. The \medianseletion", whih is presented in this paper, eliminatesthis disadvantage.This paper is organized as follows: in setion 2 existingseletion-methods are presented and in setion 3 thenew median seletion is desribed; then in setion 4the test funtions are given; in setion 5 the simulationresults are presented, whih are disussed in setion 6.Finally, there are the onlusions in setion 7.2 PLUS-, COMMA- ANDSTEADY-STATE SELECTIONIn the following setions some seletion methods forstandard evolution strategies and for steady-state al-gorithms are presented.2.1 COMMA- AND PLUS-SELECTIONFOR EVOLUTION STRATEGIESIn evolution strategies generally the omma- or plusseletion is used, denoted as (�; �) and (� + �). Here� is the size of the parent population and � is the size



of the o�spring population. This notation is motivatedby the fat that in plus seletion, the � parent indi-viduals plus the resulting � o�spring individuals formthe seletion pool for seletion of the parents of thenext generation. This auses the best individual to bealways ontained in the next generation. Therefore itis an \elitist" seletion.However, in the (�; �) seletion, only the � o�spring in-dividuals form the seletion pool. To be able to selet� new parents at all, � � � has to hold. In ommaseletion, it is possible that the best o�spring indi-vidual is worse than the best parent individual andhene a regression happens. Anyhow, this seletion isbetter suited in the long run for adaptation of the step-lengths of the individuals [Shwefel, 1992℄, beause inevery generation the possibility of hanging the strat-egy parameters exists. Additionally it allows to esapefrom loal minima.2.2 SELECTION IN STEADY-STATEALGORITHMSIn ontrast to so-alled generational evolutionary algo-rithms, where a whole o�spring population is reatedin every generation, in steady-state EAs only one ora few individuals are reated per step and immedi-ately integrated bak into the parent population. Theterm \steady-state" expresses that in one step only asmall hange takes plae and not the whole populationhanges. The basi algorithm step of steady-state ESis the following (only one step is shown, the surround-ing loop-ode is left out):1. reate a new individual and evaluate it with the�tness funtion,2. (a) selet an old individual whih may be re-plaed by the new one,(b) deide, if the old individual will be replaed.In step 2a one an hose the replaement strategy e. g.replaement of the worst, the oldest or a randomly ho-sen individual. In step 2b one an hose the replae-ment ondition, e. g. replaement if the new individualis better, or unonditional replaement. A widely usedombination is to replae the worst individual only ifthe new individual is better ([B�ak et al., 1997℄ Glos-sary, [Smith, 1998℄ p. 8). This is an elitist seletionand orresponds to the (� + 1) strategy. In our sim-ulations, a steady-state evolution strategy with thesereplaement parameters is used for omparison and isdenoted as \standard steady-state".The algorithm for the \standard steady-state ES" isas follows (I - individual; P - population; Index � -

parent population; P�(t) - population of generation t):t = 0;initialize(P�(0)); evaluate(P�(0));while (not termination) doI = reombine(P�(t));I 0 = mutate(I);evaluate(I 0);if (I 0 is better than worst(P�(t))) thenreplae worst(P�(t)) by I 0;endift = t + 1;endwhileBeause in a steady-state algorithm the parent indi-viduals partiipate in the seletion proess just as inthe ase of a plus ES, the same notation for them isused in this paper. The kind of algorithm is givenadditionally: (�+ 1) steady-state2.3 STEADY-STATE ALGORITHM WITHLOCAL TOURNAMENT-SELECTIONAnother steady-state algorithm ompared here, wasinspired by Smith and Fogarty [Smith and Fogarty,1996℄. They modi�ed Geneti Algorithms and addeda method for self-adaptation of the bit mutation rate,whih is oded into every individual. In their work thebit string of an individual onsists of two parts: 1. theenoded mutation rate (gray, binary or exponential)2. the enoded problem representation. Creation ofan o�spring individual works as follows:1. reate a new individual by rossover,2. opy this individual � times and perform steps 3and 4 on every opy:3. mutate the oded mutation rate,4. mutate the problem enoding with the new mu-tation rate,5. evaluate all � new individuals,6. selet one of the � individuals and integrate it intothe population.The idea is to generate only a small number � of o�-spring individuals with di�erent mutation rates andselet one of them (e.g. the best) to integrate it intothe main parent population. Integration is performedapplying one of the replaement strategies and replae-ment onditions mentioned earlier. This is a kind of



loal tournament seletion: (1; �). It has a high sele-tion pressure and is distintive like the normal (�; �)seletion.For this paper, the algorithm of Smith and Fogartywas transferred to an Evolution Strategy. The bestindividual was seleted from the o�spring individuals{ whih is standard in evolution strategies { analogousto the (1; �) seletion. In ontrast to the algorithm ofSmith and Fogarty, the � o�spring individuals are notreated from the same parent individual with di�er-ent mutation rates, but the parents are hosen anewfor eah o�spring individual. So the only di�erenebetween the (�; �) ES and the new algorithm lies inthe seletion method and not in the way the o�springindividuals are reated.The algorithm used in this paper is denoted as \steady-state with loal tournament seletion" and the pseu-doode is given here:t = 0;initialize(P�(0)); evaluate(P�(0));while (not termination) doP� = reombine(P�(t));P 0� = mutate(P�);evaluate(P 0�);I = seletBest(P 0�);selet Individual to replae (Irepl)if (replaement ondition) thenreplae Irepl by I;endift = t + 1;endwhileFor this speial variant of a steady-state ES, the fol-lowing notation was hosen: (�+ (1; �))This shall emphasize the (1; �) loal seletion, but itdoes not mean, that the � o�spring individuals aregenerated from one parent individual.3 MEDIAN SELECTIONThe motivation for the design of the median seletionwas to get a seletion sheme with the following prop-erties:� it should evaluate and integrate only one indivi-dual per step,� it should be a non-elitist seletion, whih faili-tates self-adaptation; a temporary worsening ofthe average �tness should be allowed, like in the(�; �) seletion.

The idea behind the median seletion is, that the dei-sion, wether an individual is integrated into the popu-lation or not, is made by a deision funtion withoutthe ontext of other individuals. The use of suh afuntion, whih is able to deide for one single indivi-dual, if it is aepted or not, makes it easy to realize asteady-state seletion. The funtion does not use the�tness values of � newly generated individuals, insteadit uses data about the �tness distribution of formerlygenerated individuals whih have already passed theseletion proess. Using this data, the behavior of a(�; �) seletion is modeled by determining the �tnesslimit, whih separates the � best individuals from the�� � remaining individuals.The model of �gure 1 was assumed for the (�; �) se-letion.
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Figure 1: (�; �) seletionOut of � parent individuals � o�spring individuals aregenerated. Thereof the � best are seleted as parentsfor the next generation. To do this, it is useful to sortthe o�spring individuals aording to their �tness.One ould look at this from another point of view:With the �tness value flim of the worst but still se-leted individual, the deision for eah of the � o�-spring individuals (�tness f(ind)), wether it is seletedas parent of the next generation or not, an be madeby simply omparing the �tness values:if (f(ind) >= f_lim) then integrate(ind);



The \aeptane limit" flim is determined by the dis-tribution of the �tness values of all o�spring individu-als and is the �-smallest value (for minimization) orthe �-median of the set of �tness values. Hene thename.A model is used for the distribution of the �tness val-ues and flim is determined from it. With every newlyreated and evaluated individual the model is updated.Beause the average �tness of the population should beinreasing permanently, it is desired that relatively old�tness values are removed from the model. No parti-ular distribution (e. g. Gaussian normal distributionor similar) was assumed. Instead, the distribution isreorded with a sample of the last np �tness values ofthe reated o�spring individuals. For this reording a�tness bu�er is used, whih is organized aording tothe FIFO-priniple (First In First Out) (�gure 2).
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n m/lpFigure 2: The bu�er with the �tness values of the lastnp reated o�spring individuals. On the top the FIFO-view is shown, below the aess aording to sorted�tness values.This bu�er an be aessed in two ways:1. in FIFO organization, for insertion of a new �tnessvalue. It remains np steps in the bu�er and thendrops out.2. in sorted order aording to the �tness value, fordetermining the �-median.The bu�er is realized as an array beause the num-ber of values remains onstant. The insertion indexis moved ylially when a new �tness value is in-serted. To eÆiently aess the k-smallest elementa doubly linked list of the elements in sorted orderis maintained. On insertion of an element, these

links are updated. The insertion operation is de-noted in the following text by fifo insert(). Aessto the k-smallest element is realized by the funtionfifo getSorted(k).For determining the �-median, whih represents theaeptane limit flim, the �tness value at index np � ��has to be aessed in the sorted bu�er.Beause the algorithm with median seletion is alsoa steady-state algorithm, the same notation is used.The seletion method has to be given additionally:(�+ 1) medianAdditional parameters for the median seletion are thelength of the FIFO-bu�er np (it an be di�erent fromthe number of o�spring individuals of a orresponding(�; �) ES) and the relative rate of aeptane rp=̂��whih determines the aeptane limit in this way:flim = �fo getSorted(rp � np)Smith and Fogarty [Smith and Fogarty, 1996℄ use aratio of �� = 15 = 0:2. B�ak [B�ak, 1992a℄ uses a ratioof �� � 16 � 0:16667. In evolution strategies the ratio�� = 15100 = 0:15 is often used [Ostermeier et al., 1993℄.The algorithm for the steady-state Evolution Strategywith median seletion is:t = 0;initialize(P�(0)); evaluate(P�(0));fifo init();while (not termination) doI = reombine(P�(t));I 0 = mutate(I);evaluate(I 0);flim = fifo getSorted(rp � np);if (f(I 0) better than flim) thenselet Individual to replae (Irepl)replae Irepl by I 0;endiffifo insert(f(I 0));t = t + 1;endwhileThe seletion of the individual to replae Irepl an beperformed by one of the replaement methods men-tioned in setion 2.2: replaement of the worst, oldestor a randomly hosen individual.4 TEST FUNCTIONSThe following funtions numbered aording to [B�ak,1992b℄ were used as test funtions:



� f2 Generalized Rosenbrok's Funtion (unimodalwith interdependenies between variables)� f6 Shwefel's Funtion 1.2 (unimodal)� f9 Akley's Funtion (multimodal)� f15 Weighted Sphere Model (unimodal, extensionof the \Sphere Model" funtion f1 with di�erentweights for eah variable)� f24 Kowalik (multimodal)5 SIMULATIONSAll simulations were done with the EvA-system forEvolutionary Algorithms [Wakunda and Zell, 1997℄,our own system whih ontains a large number of vari-ants of geneti algorithms and evolution strategies.In the simulations a population size of � = 20 wasused onsistently to ensure omparability. This is es-peially neessary for the multimodal funtions f9 andf24 in order not to onverge into a loal optimum. Forthe unimodal funtions f2, f6 and f15, � = 1 wouldbe suÆient, but the problems for whih steady-statealgorithms are used, are normally multimodal \real-world" problems.The simulations were performed on a uniproessoromputer. They serve at �rst for omparing the di�er-ent methods. The test funtions are relatively fast toompute in omparison with the ommuniation timeover a network. So a distributed omputation wouldnot be eÆient. But an implementation with parallel,asynhronous evaluation of multiple individuals to beused for bigger optimization problems exists alreadyas logial ontinuation of this work.For all simulations the Covariane-Matrix Adaptation(CMA) was used for adaptation of the strategy param-eters, beause this method is the most powerful of theexisting adaptation methods [Hansen and Ostermeier,1996℄.The ompared strategies are:1. (20; �) Evolution Strategy (omma),2. (20 + 1) ES (plus),3. (20+1) steady-state ES with replae worst, if bet-ter ; the \standard steady-state"{algorithm,4. (20 + (1; �)) steady-state ES with loal tourna-ment seletion, replaement strategy replae old-est and replaement ondition always (seletiontakes already plae in loal tournament),

5. (20 + 1) steady-state ES with median seletion,also with replaement strategy replae oldest andreplaement ondition always.In simulations prior to the tests listed here, it wasshown that the replaement strategy replae oldest isadvantageous in evolution strategies: it auses a non-elitist seletion (in ontrast to replae worst), whihis also the ase in (�; �) seletion. Loal Tournamentseletion and median seletion bring both their ownreplaement ondition: the loal tournament and theomparison with the aeptane limit flim.For the di�erent parameters to set for these strategies,no stati standard values were used, but for every fun-tion the optimal values were determined separately byan extra experiment. These are the following parame-ters:� (20; �) ES: optimal �,� (20 + (1; �)) ES with loal tournament seletion:optimal tournament size �,� (20+1) ES with median seletion: optimal bu�ersize np, the aeptane limit rp = 0:15 turned outto be good for all simulations.The atual hosen values are given in the simulationssetion.In the following setions 30 runs have been evaluatedfor eah strategy with di�erent values for the randomnumber generator, exept for f24, where 100 runs wereused (see 5.5). For eah test funtion, a diagram ispresented, whih shows for eah strategy the averagenumber of funtion evaluations needed and the rangeof the standard deviation.5.1 F2 GENERALIZED ROSENBROCK'SFUNCTIONFuntion f2 was alulated with dimension n = 20,termination riterion was reahing a �tness value lessthan � = 10�20 with a maximum of tmax = 270:000funtion evaluations.For the omma-ES � = 80 was hosen, for the steady-state ES with loal tournament seletion, � = 5 washosen and the bu�er size of the median-ES was np =40 (the aeptane limit is rp = 0:15 for all testedfuntions).In �gure 3 for eah strategy the average value andthe range of the standard deviation of the number offuntion evaluations is given.
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Figure 3: Average and standard deviation of the num-ber of funtion evaluations until reahing a �tnessvalue less than 10�20 for funtion f2.For funtion f2 median seletion needs on average ap-prox. 5% more funtion evaluations than the plusstrategy. The di�erene to the standard steady-statealgorithm is even smaller. For the strategy with lo-al tournament seletion, however, approx. 16% morefuntion evaluations than for the plus strategy areneeded. The omma strategy needs even twie as muhas plus. This point will be disussed in more detail insetion 6.5.2 F6 SCHWEFEL'S FUNCTION 1.2
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Figure 4: Average and standard deviation of the num-ber of funtion evaluations until reahing a �tnessvalue less than 10�20 for funtion f6.Funtion f6 was alulated with dimension n = 20,termination riterion was reahing a �tness value lessthan � = 10�20, tmax = 100:000.

The following free parameters were hosen: � = 70(omma-ES); � = 5 (loal tournament); np = 70 (me-dian).For this funtion the three other steady-state algo-rithms need between 15% and 19% more funtion eval-uations than steady-state with median seletion.5.3 F9 ACKLEY'S FUNCTIONFuntion f9 was alulated with dimension n = 20,termination riterion was reahing a �tness value lessthan � = 10�10 (due to limited omputing preision),tmax = 150:000.The following free parameters were hosen: � = 60(omma-ES); � = 5 (loal tournament); np = 40 (me-dian).
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Figure 5: Average and standard deviation of the num-ber of funtion evaluations until reahing a �tnessvalue less than 10�10 for funtion f9.Here the steady-state algorithm with median seletionneeds on average the lowest number of funtion eval-uations and has a relatively small standard deviation.The tournament method needs approx. 14% and plusand standard steady-state approx. 23% more fun-tion evaluations on average. The tournament methodshows here an extremely small standard deviation.In ontrast, standard steady-state and espeially plushave a several times greater one.5.4 F15 WEIGHTED SPHERE MODELFuntion f15 was alulated with dimension n = 20,termination riterion was reahing a �tness value lessthan � = 10�20, tmax = 160:000.The free parameters were optimized to: � = 65(omma); � = 4 (lo. tournament); np = 40 (median).
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Figure 6: Average and standard deviation of the num-ber of funtion evaluations until reahing a �tnessvalue less than 10�20 for funtion f15.For plus, standard steady-state and the median sele-tion, equally good results are obtained for this fun-tion, with negligible di�erenes. Loal tournament se-letion needs approx. 18% more funtion evaluations.The standard deviations are very small for this uni-modal funtion.5.5 F24 KOWALIK
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Figure 7: Average and standard deviation of the num-ber of funtion evaluations until reahing a �tnessvalue less than 3:07486 � 10�4 for funtion f24.The dimension of funtion f24 is �xed at n = 4. Theoptimum of f24 is given in literature [B�ak 1992b℄with min(f24) � f24(0:1928; 0:1908; 0:1231; 0:1358) �3:07485988 � 10�4. Termination riterion was reahinga �tness value less than � = 3:07486 � 10�4 with amaximum of tmax = 200:000 funtion evaluations.

The following free parameters were hosen: � = 100(omma-ES); � = 6 (loal tournament); np = 40 (me-dian).The optimum of f24 is not at 0, here suh a good ap-proximation of the optimum like in the other funtionswas not demanded. All ompared strategies reahedthe global optimum only in half of the runs. Hene weused 100 runs per strategy to obtain more signi�antresults.Here, standard steady-state and the median sele-tion have approximately the same average values, plusneeds approx. 20%, loal tournament seletion approx.34% more funtion evaluations. But the relevane ofthis result beomes smaller when we onsider the largestandard deviations.6 DISCUSSION OF THE RESULTSThe omparisons were all performed with the samenumber of parent individuals � = 20. Thereby the(20; �)-ES needs more funtion evaluations than the(20 + 1)-ES and the other steady-state algorithms.The reason for this probably lies in the interdepen-dene of the population size and the seletion pressureof the omma strategy, whih is given by the ratioof �=�. Consequently, for a �xed � and �xed sele-tion pressure, an aordingly large � has to be hosen.But in one generation, no arbitrarily big optimizationprogress an be ahieved. Above a ertain value, aninrease of � has no noteworthy e�et, regarding thepossible progress. In this ase, it is more eÆient totake several smaller steps with a redued size o�springpopulation whih leads to a bigger progress altogether.The (20+1)-ES always behaves approximately like thestandard steady-state evolution strategy with replaeworst, if better replaement strategy and ondition.This result was expeted, but di�erenes in implemen-tation are possible and probable. In plus strategy, theparent and o�spring populations are mixed, sorted andthen the � = 20 best are seleted for the next genera-tion. This is neessary beause � an be an arbitraryvalue bigger or equal to 1. In ontrast to this, for thestandard steady-state strategy � is always 1, so withthe replaement strategy replae worst not the wholepopulation has to be sorted, but only the worst indi-vidual has to be found and eventually replaed.The steady-state evolution strategy with median sele-tion obtains very good results for all �ve test funtionsused here. For the funtions f2; f15 and f24 approx-imately the same number of funtion evaluations areneeded as with the best other strategies. For the fun-tions f6 and f9 the median seletion is even better than



the other strategies tested here.The strategy with loal tournament seletion seemsto be not so suitable for evolution strategies, in mostof the ases it needs more funtion evaluations thanother strategies. Only at funtion f9 it is better thanthe plus- and standard steady-state strategy and evenshows an extremely small standard deviation. But atthis funtion the median seletion strategy is best.Further investigation of the median seletion isplanned, e. g. measuring the atual rate of aep-tane, that means the number of individuals whih areaepted in relation to the total number of o�springindividuals generated. This rate has not to be identialwith the aeptane rate parameter rp. This parame-ter is only used for aessing the FIFO-bu�er to get theaeptane limit flim. Also, tests with the parallelizedversion of the algorithm with asynhronous evaluationand integration of the individuals will be made. Theimpat on the e�etiveness is to be analyzed.7 CONCLUSIONSThe new seletion method median seletion for steady-state evolution strategies was presented and omparedfor a number of test funtions with other steady-stateseletion methods and the generational (�; �) ES. Itshowed that the non-elitist median seletion enablesself-adaptation as well as or even better than all otherseletion methods.Furthermore it turned out that the use of a steady-state evolution strategy is valuable even on a singleproessor omputer without parallel evaluation of theindividuals. This is true espeially for multimodalfuntions, where the number of parent individuals �has to be larger than 1 to ensure a reasonable onver-gene probability to �nd the global optimum.Referenes[B�ak, 1992a℄ B�ak, T. (1992a). The interation ofmutation rate, seletion and self-adaptation withina geneti algorithm. In M�anner, R. and Mander-ik, B., editors, Parallel Problem Solving from Na-ture { PPSN II, volume 2, pages 85{94, Amsterdam,Netherlands. Elsevier Siene Publishers.[B�ak, 1992b℄ B�ak, T. (1992b). A user's guide togenesys 1.0. Tehnial report, University of Dort-mund, Department of Computer Siene, SystemAnalysis Researh Group.[B�ak et al., 1997℄ B�ak, T., Fogel, D. B., andMihalewiz, Z., editors (1997). Handbook of Evolu-

tionary Computation. IOP Publishing and OxfordUniversity Press, New York, Bristol.[Hansen and Ostermeier, 1996℄ Hansen, N. and Oster-meier, A. (1996). Adapting arbitrary normal mu-tation distributions in evolution strategies: Theovariane matrix adaptation. In Proeedings ofthe 1996 IEEE International Conferene on Evo-lutionary Computation (ICEC '96), pages 312{317,Nagoya, Japan. IEEE.[Ostermeier et al., 1993℄ Ostermeier, A., Gawelzyk,A., and Hansen, N. (1993). A derandomized ap-proah to self adaptation of evolution strategies.Tehnial report, Tehnishe Universit�at Berlin.[Rehenberg, 1973℄ Rehenberg, I. (1973). Opti-mierung tehnisher Systeme nah Prinzipien derbiologishen Evolution. PhD thesis, TU Berlin, F.f. Mashinenwesen. Published also in: Shriften zurInformatik 1971.[Rehenberg, 1994℄ Rehenberg, I. (1994). Evolutions-strategie '94, volume 1 ofWerkstatt Bionik und Evo-lutionstehnik. frommann{holzboog, Stuttgart.[Rudolph, 1997℄ Rudolph, G. (1997). Evolutionstrategies. In [B�ak et al., 1997℄, pages B1.3:1{B1.3:6.[Shwefel, 1977℄ Shwefel, H.-P. (1977). NumerisheOptimierung von Computer-Modellen mittels derEvolutionsstrategie, volume 26 of Interdisiplinarysystems researh. Birkh�auser, Basel.[Shwefel, 1992℄ Shwefel, H.-P. (1992). Natural evo-lution and olletive optimum seeking. In Sydow,A., editor, Computational Systems Analysis | Top-is and Trends, pages 5{14. Elsevier, Amsterdam.[Smith, 1998℄ Smith, J. E. (1998). Self Adaptation inEvolutionary Algorithms. PhD thesis, Faulty ofComputer Studies and Mathematis, University ofthe West of England, Bristol.[Smith and Fogarty, 1996℄ Smith, J. E. and Fogarty,T. C. (1996). Self adaptation of mutation rates ina steady state geneti algorithm. In Proeedings ofthe 1996 IEEE Conferene on Evolutionary Compu-tation, pages 318{323, New York. IEEE Press.[Wakunda and Zell, 1997℄ Wakunda, J. and Zell, A.(1997). EvA - a tool for optimization with evolu-tionary algorithms. In Proeedings of the 23rd EU-ROMICRO Conferene, Budapest, Hungary.


