A new Selection Scheme for Steady-State Evolution Strategies

Jirgen Wakunda and Andreas Zell
University of Tiibingen, Computer Science Dept.
Kostlinstr. 6, D-72074 Tiibingen, Germany
{wakunda,zell} @informatik.uni-tuebingen.de

Abstract

In this paper, a new selection scheme for a
(1 + 1) steady-state evolution strategy is de-
scribed: the so-called median selection. In
contrast to generational algorithms, only one
individual is generated and evaluated in one
step of the algorithm and is immediately inte-
grated into the population. Previous steady-
state algorithms are similar to the (u+ \) se-
lection scheme in evolution strategies, which
has a disadvantage in the fast self-adaptation
of mutation step-length. This is compensated
by the presented median selection, which is
oriented at the (u, A) selection. The median
selection is compared with other steady-state
selection schemes and with (u,A) selection.
As a result, median selection achieves bet-
ter or equally good results as the other selec-
tion schemes for a large number of bench-
mark functions. Additionally, it is shown
that the use of a sequential steady-state evo-
lution strategy is advantageous even on one-
processor computers.

1 INTRODUCTION

Evolution Strategies (ES) were developed at the end of
the sixties by Ingo Rechenberg and Hans-Paul Schwe-
fel at the Technical University of Berlin [Rechenberg,
1973, Schwefel, 1977]. Since then, they have been im-
proved enormously in theory and practice and have
been established in the line of Evolutionary Algorithms
(EA), beside Genetic Algorithms (GA), Genetic Pro-
gramming (GP), Evolutionary Programming (EP) and
similar methods.

The main applications of evolution strategies are
multi-dimensional, real-valued parameter optimization

problems. The most important property of ES is the
ability of self-adaptation. With self-adaptation the
size and distribution of mutations on the object vari-
ables are adapted at runtime and thus the optimization
speed is maximized. Methods for self-adaptation are
for example the 1/5-success-rule, mutative step con-
trol [Rechenberg, 1994], “derandomized” step control
[Ostermeier et al. 1993] or the powerful covariance
matrix adaptation (CMA) [Hansen and Ostermeier,
1996]. The selection method plays an important role
for self-adaptation. In [Schwefel, 1992] it is shown,
that regarding speed of self-adaptation, (u, \) selec-
tion is superior to (u + A) selection (see next section).
The (14 1) Evolution Strategy was proposed early by
Rechenberg [Rechenberg, 1994], but nowadays is no
longer used because there is missing a scheme for re-
alizing self-adaptation [Rudolph, 1997]. The “median
selection”, which is presented in this paper, eliminates
this disadvantage.

This paper is organized as follows: in section 2 existing
selection-methods are presented and in section 3 the
new median selection is described; then in section 4
the test functions are given; in section 5 the simulation
results are presented, which are discussed in section 6.
Finally, there are the conclusions in section 7.

2 PLUS-, COMMA- AND
STEADY-STATE SELECTION

In the following sections some selection methods for
standard evolution strategies and for steady-state al-
gorithms are presented.

2.1 COMMA- AND PLUS-SELECTION
FOR EVOLUTION STRATEGIES

In evolution strategies generally the comma- or plus
selection is used, denoted as (u,) and (u + A). Here
1 is the size of the parent population and X is the size

of the offspring population. This notation is motivated
by the fact that in plus selection, the y parent indi-
viduals plus the resulting A offspring individuals form
the selection pool for selection of the parents of the
next generation. This causes the best individual to be
always contained in the next generation. Therefore it
is an “elitist” selection.

However, in the (u, A) selection, only the X offspring in-
dividuals form the selection pool. To be able to select
1 new parents at all, A > p has to hold. In comma
selection, it is possible that the best offspring indi-
vidual is worse than the best parent individual and
hence a regression happens. Anyhow, this selection is
better suited in the long run for adaptation of the step-
lengths of the individuals [Schwefel, 1992], because in
every generation the possibility of changing the strat-
egy parameters exists. Additionally it allows to escape
from local minima.

2.2 SELECTION IN STEADY-STATE
ALGORITHMS

In contrast to so-called generational evolutionary algo-
rithms, where a whole offspring population is created
in every generation, in steady-state EAs only one or
a few individuals are created per step and immedi-
ately integrated back into the parent population. The
term “steady-state” expresses that in one step only a
small change takes place and not the whole population
changes. The basic algorithm step of steady-state ES
is the following (only one step is shown, the surround-
ing loop-code is left out):

1. create a new individual and evaluate it with the
fitness function,

2. (a) select an old individual which may be re-
placed by the new one,
(b) decide, if the old individual will be replaced.

In step 2a one can chose the replacement strategy e. g.
replacement of the worst, the oldest or a randomly cho-
sen individual. In step 2b one can chose the replace-
ment condition, e. g. replacement if the new individual
is better, or unconditional replacement. A widely used
combination is to replace the worst individual only if
the new individual is better ([Bick et al., 1997] Glos-
sary, [Smith, 1998] p. 8). This is an elitist selection
and corresponds to the (u + 1) strategy. In our sim-
ulations, a steady-state evolution strategy with these
replacement parameters is used for comparison and is
denoted as “standard steady-state”.

The algorithm for the “standard steady-state ES” is
as follows (I - individual; P - population; Index u -

parent population; P,(t) - population of generation t):

t = 0;
initialize(P,(0)); evaluate(P,(0));
while (not termination) do
I = recombine(P,(t));
I' = mutate(]);
evaluate(I');
if (I' is better than worst(P,(t))) then
replace worst(P,(t)) by I';
endif
t =t + 1;
endwhile

Because in a steady-state algorithm the parent indi-
viduals participate in the selection process just as in
the case of a plus ES, the same notation for them is
used in this paper. The kind of algorithm is given
additionally: (p + 1) steady-state

2.3 STEADY-STATE ALGORITHM WITH
LOCAL TOURNAMENT-SELECTION

Another steady-state algorithm compared here, was
inspired by Smith and Fogarty [Smith and Fogarty,
1996]. They modified Genetic Algorithms and added
a method for self-adaptation of the bit mutation rate,
which is coded into every individual. In their work the
bit string of an individual consists of two parts: 1. the
encoded mutation rate (gray, binary or exponential)
2. the encoded problem representation. Creation of
an offspring individual works as follows:

1. create a new individual by crossover,

2. copy this individual A times and perform steps 3
and 4 on every copy:

3. mutate the coded mutation rate,

4. mutate the problem encoding with the new mu-
tation rate,

5. evaluate all A new individuals,

6. select one of the A individuals and integrate it into
the population.

The idea is to generate only a small number A of off-
spring individuals with different mutation rates and
select one of them (e.g. the best) to integrate it into
the main parent population. Integration is performed
applying one of the replacement strategies and replace-
ment conditions mentioned earlier. This is a kind of

local tournament selection: (1,). It has a high selec-
tion pressure and is distinctive like the normal (u, A)
selection.

For this paper, the algorithm of Smith and Fogarty
was transferred to an Evolution Strategy. The best
individual was selected from the offspring individuals
— which is standard in evolution strategies — analogous
to the (1,) selection. In contrast to the algorithm of
Smith and Fogarty, the A offspring individuals are not
created from the same parent individual with differ-
ent mutation rates, but the parents are chosen anew
for each offspring individual. So the only difference
between the (u,A) ES and the new algorithm lies in
the selection method and not in the way the offspring
individuals are created.

The algorithm used in this paper is denoted as “steady-
state with local tournament selection” and the pseu-
docode is given here:

t =0;
initialize(P,(0)); evaluate(P,(0));
while (not termination) do
P\ = recombine(P,(t));
P| = mutate(P));
evaluate(FPy);
I = selectBest(Fy);
select Individual to replace (Iy¢p)
if (replacement condition) then
replace I by I;
endif
t =t + 1;
endwhile

For this special variant of a steady-state ES, the fol-
lowing notation was chosen: (u + (1, \))

This shall emphasize the (1,) local selection, but it
does mot mean, that the A offspring individuals are
generated from one parent individual.

3 MEDIAN SELECTION

The motivation for the design of the median selection
was to get a selection scheme with the following prop-
erties:

e it should evaluate and integrate only one indivi-
dual per step,

e it should be a non-elitist selection, which facili-
tates self-adaptation; a temporary worsening of
the average fitness should be allowed, like in the
(1, A) selection.

The idea behind the median selection is, that the deci-
sion, wether an individual is integrated into the popu-
lation or not, is made by a decision function without
the context of other individuals. The use of such a
function, which is able to decide for one single indivi-
dual, if it is accepted or not, makes it easy to realize a
steady-state selection. The function does not use the
fitness values of A newly generated individuals, instead
it uses data about the fitness distribution of formerly
generated individuals which have already passed the
selection process. Using this data, the behavior of a
(1, A) selection is modeled by determining the fitness
limit, which separates the p best individuals from the
A — p remaining individuals.

The model of figure 1 was assumed for the (u, \) se-
lection.

generation t generation

t+1

al N

u

density

I,

A-p o p
i

im

» fitness

Figure 1: (u, A) selection

Out of p parent individuals A offspring individuals are
generated. Thereof the p best are selected as parents
for the next generation. To do this, it is useful to sort
the offspring individuals according to their fitness.

One could look at this from another point of view:
With the fitness value fj;,, of the worst but still se-
lected individual, the decision for each of the \ off-
spring individuals (fitness f(ind)), wether it is selected
as parent of the next generation or not, can be made
by simply comparing the fitness values:

if (£(ind) >= f_1lim) then integrate(ind);

The “acceptance limit” fi;,, is determined by the dis-
tribution of the fitness values of all offspring individu-
als and is the p-smallest value (for minimization) or
the p-median of the set of fitness values. Hence the
name.

A model is used for the distribution of the fitness val-
ues and fi;,, is determined from it. With every newly
created and evaluated individual the model is updated.
Because the average fitness of the population should be
increasing permanently, it is desired that relatively old
fitness values are removed from the model. No partic-
ular distribution (e. g. Gaussian normal distribution
or similar) was assumed. Instead, the distribution is
recorded with a sample of the last n, fitness values of
the created offspring individuals. For this recording a
fitness buffer is used, which is organized according to
the FIFO-principle (First In First Out) (figure 2).

FIFO-view
in
Ll‘-n/ﬁr] FIFO-index ¢-2 t-1 t
f f f T f f f 1
3 n,-1 2
/ out
t-2 FIFO-index t—np+1 t
S f | f |mmmmmmnn) [S
n, n- 1 n ,;'2 sorted index | 3 2 1
- — i » J
n,A=p)/A nu\
sorted view

Figure 2: The buffer with the fitness values of the last
nyp created offspring individuals. On the top the FIFO-
view is shown, below the access according to sorted
fitness values.

This buffer can be accessed in two ways:

1. in FIFO organization, for insertion of a new fitness
value. It remains n, steps in the buffer and then
drops out.

2. in sorted order according to the fitness value, for
determining the u-median.

The buffer is realized as an array because the num-
ber of values remains constant. The insertion index
is moved cyclically when a new fitness value is in-
serted. To efficiently access the k-smallest element
a doubly linked list of the elements in sorted order
is maintained. On insertion of an element, these

links are updated. The insertion operation is de-
noted in the following text by fifo_insert(). Access
to the k-smallest element is realized by the function
fifo_getSorted(k).

For determining the p-median, which represents the
acceptance limit fi;, the fitness value at index n,, - £
has to be accessed in the sorted buffer.

Because the algorithm with median selection is also
a steady-state algorithm, the same notation is used.
The selection method has to be given additionally:

(u + 1) median

Additional parameters for the median selection are the
length of the FIFO-buffer n, (it can be different from
the number of offspring individuals of a corresponding
(1, A) ES) and the relative rate of acceptance r,=%
which determines the acceptance limit in this way:
frim = fifo_getSorted(r, - ny)

Smith and Fogarty [Smith and Fogarty, 1996] use a
ratio of & = 1 = 0.2. Biick [Béck, 1992a] uses a ratio
of & ~ % ~ 0.16667. In evolution strategies the ratio

& = ;5 =0.15 is often used [Ostermeier et al., 1993].

The algorithm for the steady-state Evolution Strategy
with median selection is:

t =0;
initialize(P,(0)); evaluate(P,(0));
fifo_init();
while (not termination) do
I = recombine(P,(t));
I' = mutate(]);
evaluate(I');
frim = fifo_getSorted(r, - np);
if (£(I') better than fj;,) then
select Individual to replace (Iyep)
replace I, by I';
endif
fifo_insert (f(I"));
t =t + 1;
endwhile

The selection of the individual to replace I., can be
performed by one of the replacement methods men-
tioned in section 2.2: replacement of the worst, oldest
or a randomly chosen individual.

4 TEST FUNCTIONS

The following functions numbered according to [Back,
1992b] were used as test functions:

f2 Generalized Rosenbrock’s Function (unimodal
with interdependencies between variables)

fe Schwefel’s Function 1.2 (unimodal)

fo Ackley’s Function (multimodal)

f15 Weighted Sphere Model (unimodal, extension
of the “Sphere Model” function f; with different
weights for each variable)

f24 Kowalik (multimodal)

5 SIMULATIONS

All simulations were done with the EvA-system for
FEvolutionary Algorithms [Wakunda and Zell, 1997],
our own system which contains a large number of vari-
ants of genetic algorithms and evolution strategies.

In the simulations a population size of u = 20 was
used consistently to ensure comparability. This is es-
pecially necessary for the multimodal functions fy and
f24 in order not to converge into a local optimum. For
the unimodal functions f2, f¢ and fi5, p = 1 would
be sufficient, but the problems for which steady-state
algorithms are used, are normally multimodal “real-
world” problems.

The simulations were performed on a uniprocessor
computer. They serve at first for comparing the differ-
ent methods. The test functions are relatively fast to
compute in comparison with the communication time
over a network. So a distributed computation would
not be efficient. But an implementation with parallel,
asynchronous evaluation of multiple individuals to be
used for bigger optimization problems exists already
as logical continuation of this work.

For all simulations the Covariance-Matrix Adaptation
(CMA) was used for adaptation of the strategy param-
eters, because this method is the most powerful of the
existing adaptation methods [Hansen and Ostermeier,
1996].

The compared strategies are:

1. (20, A) Evolution Strategy (comma),
2. (20 + 1) ES (plus),

3. (20+1) steady-state ES with replace worst, if bet-
ter; the “standard steady-state”—algorithm,

4. (20 + (1,)) steady-state ES with local tourna-
ment selection, replacement strategy replace old-
est and replacement condition always (selection
takes already place in local tournament),

5. (20 + 1) steady-state ES with median selection,
also with replacement strategy replace oldest and
replacement condition always.

In simulations prior to the tests listed here, it was
shown that the replacement strategy replace oldest is
advantageous in evolution strategies: it causes a non-
elitist selection (in contrast to replace worst), which
is also the case in (u, \) selection. Local Tournament
selection and median selection bring both their own
replacement condition: the local tournament and the
comparison with the acceptance limit f;y,.

For the different parameters to set for these strategies,
no static standard values were used, but for every func-
tion the optimal values were determined separately by
an extra experiment. These are the following parame-
ters:

e (20,) ES: optimal A,

e (20 + (1,))) ES with local tournament selection:
optimal tournament size A,

e (204 1) ES with median selection: optimal buffer
size n,, the acceptance limit r, = 0.15 turned out
to be good for all simulations.

The actual chosen values are given in the simulations
section.

In the following sections 30 runs have been evaluated
for each strategy with different values for the random
number generator, except for fo4, where 100 runs were
used (see 5.5). For each test function, a diagram is
presented, which shows for each strategy the average
number of function evaluations needed and the range
of the standard deviation.

5.1 F, GENERALIZED ROSENBROCK’S
FUNCTION

Function f; was calculated with dimension n = 20,
termination criterion was reaching a fitness value less
than A = 10~2° with a maximum of ¢,,,; = 270.000
function evaluations.

For the comma-ES A = 80 was chosen, for the steady-
state ES with local tournament selection, A = 5 was
chosen and the buffer size of the median-ES was n), =
40 (the acceptance limit is r, = 0.15 for all tested
functions).

In figure 3 for each strategy the average value and
the range of the standard deviation of the number of
function evaluations is given.

240000
220000
[%2]
5 200000
kS|
3 180000
8
5
5 160000
5
140000
120000 { { {
100000 L L L L L
Comma Plus local Standard Median

Tournament Steady-State

Figure 3: Average and standard deviation of the num-
ber of function evaluations until reaching a fitness
value less than 10720 for function fo.

For function f, median selection needs on average ap-
prox. 5% more function evaluations than the plus
strategy. The difference to the standard steady-state
algorithm is even smaller. For the strategy with lo-
cal tournament selection, however, approx. 16% more
function evaluations than for the plus strategy are
needed. The comma strategy needs even twice as much
as plus. This point will be discussed in more detail in
section 6.

5.2 F; SCHWEFEL’S FUNCTION 1.2

95000 T
90000
85000

—_——

80000
75000
70000
65000

60000

function evaluations

55000
50000

——

—_——

1

45000

40000

1

Comma

Plus

local

Standard

Median

Tournament Steady-State

Figure 4: Average and standard deviation of the num-
ber of function evaluations until reaching a fitness
value less than 1029 for function f.

Function fg was calculated with dimension n = 20,
termination criterion was reaching a fitness value less
than A = 1072, ¢,,4, = 100.000.

The following free parameters were chosen: A = 70
(comma-ES); A =5 (local tournament); n,, = 70 (me-
dian).

For this function the three other steady-state algo-
rithms need between 15% and 19% more function eval-
uations than steady-state with median selection.

5.3 Fy ACKLEY’S FUNCTION

Function f9 was calculated with dimension n = 20,
termination criterion was reaching a fitness value less
than A = 10719 (due to limited computing precision),
tmaz = 150.000.

The following free parameters were chosen: A = 60
(comma-ES); A =5 (local tournament); n,, = 40 (me-
dian).

55000 T

50000 I
1

45000

40000

35000

30000

function evaluations

—_—t

25000

—_—

20000

Median

15000
Comma Plus local Standard
Tournament Steady-State

Figure 5: Average and standard deviation of the num-
ber of function evaluations until reaching a fitness
value less than 10710 for function fj.

Here the steady-state algorithm with median selection
needs on average the lowest number of function eval-
uations and has a relatively small standard deviation.
The tournament method needs approx. 14% and plus
and standard steady-state approx. 23% more func-
tion evaluations on average. The tournament method
shows here an extremely small standard deviation.
In contrast, standard steady-state and especially plus
have a several times greater one.

5.4 Fi; WEIGHTED SPHERE MODEL

Function fi5 was calculated with dimension n = 20,
termination criterion was reaching a fitness value less
than A = 10729, ¢,,,, = 160.000.

The free parameters were optimized to: A = 65
(comma); A = 4 (loc. tournament); n, = 40 (median).

60000

——

55000

50000

45000

40000

function evaluations

35000

30000

! ! i

25000
Comma Plus local Standard
Tournament Steady-State

Median

Figure 6: Average and standard deviation of the num-
ber of function evaluations until reaching a fitness
value less than 1072° for function fi5.

For plus, standard steady-state and the median selec-
tion, equally good results are obtained for this func-
tion, with negligible differences. Local tournament se-
lection needs approx. 18% more function evaluations.
The standard deviations are very small for this uni-
modal function.

5.5 Fyy KOWALIK

24000

22000

20000

18000

16000

14000

12000

function evaluations

10000

8000

6000

Median

4000 . | . .
Comma Plus local Standard
Tournament Steady-State

Figure 7: Average and standard deviation of the num-
ber of function evaluations until reaching a fitness
value less than 3.07486 - 10~* for function fa4.

The dimension of function fo4 is fixed at n = 4. The
optimum of faq is given in literature [Béack 1992b]
with min(fos4) & f24(0.1928,0.1908,0.1231,0.1358) =~
3.07485988 - 10~%. Termination criterion was reaching
a fitness value less than A = 3.07486 - 10~* with a
maximum of ¢,,,, = 200.000 function evaluations.

The following free parameters were chosen: A = 100
(comma-ES); A = 6 (local tournament); n,, = 40 (me-
dian).

The optimum of fs4 is not at 0, here such a good ap-
proximation of the optimum like in the other functions
was not demanded. All compared strategies reached
the global optimum only in half of the runs. Hence we
used 100 runs per strategy to obtain more significant
results.

Here, standard steady-state and the median selec-
tion have approximately the same average values, plus
needs approx. 20%, local tournament selection approx.
34% more function evaluations. But the relevance of
this result becomes smaller when we consider the large
standard deviations.

6 DISCUSSION OF THE RESULTS

The comparisons were all performed with the same
number of parent individuals g = 20. Thereby the
(20, A)-ES needs more function evaluations than the
(20 4+ 1)-ES and the other steady-state algorithms.
The reason for this probably lies in the interdepen-
dence of the population size and the selection pressure
of the comma strategy, which is given by the ratio
of pu/X\. Consequently, for a fixed p and fixed selec-
tion pressure, an accordingly large A has to be chosen.
But in one generation, no arbitrarily big optimization
progress can be achieved. Above a certain value, an
increase of A has no noteworthy effect, regarding the
possible progress. In this case, it is more efficient to
take several smaller steps with a reduced size offspring
population which leads to a bigger progress altogether.

The (204 1)-ES always behaves approximately like the
standard steady-state evolution strategy with replace
worst, if better replacement strategy and condition.
This result was expected, but differences in implemen-
tation are possible and probable. In plus strategy, the
parent and offspring populations are mixed, sorted and
then the p = 20 best are selected for the next genera-
tion. This is necessary because A can be an arbitrary
value bigger or equal to 1. In contrast to this, for the
standard steady-state strategy A is always 1, so with
the replacement strategy replace worst not the whole
population has to be sorted, but only the worst indi-
vidual has to be found and eventually replaced.

The steady-state evolution strategy with median selec-
tion obtains very good results for all five test functions
used here. For the functions fs, fi5 and fo4 approx-
imately the same number of function evaluations are
needed as with the best other strategies. For the func-
tions fg and fo the median selection is even better than

the other strategies tested here.

The strategy with local tournament selection seems
to be not so suitable for evolution strategies, in most
of the cases it needs more function evaluations than
other strategies. Only at function fy it is better than
the plus- and standard steady-state strategy and even
shows an extremely small standard deviation. But at
this function the median selection strategy is best.

Further investigation of the median selection is
planned, e. g. measuring the actual rate of accep-
tance, that means the number of individuals which are
accepted in relation to the total number of offspring
individuals generated. This rate has not to be identical
with the acceptance rate parameter r,. This parame-
ter is only used for accessing the FIFO-buffer to get the
acceptance limit fi;,,. Also, tests with the parallelized
version of the algorithm with asynchronous evaluation
and integration of the individuals will be made. The
impact on the effectiveness is to be analyzed.

7 CONCLUSIONS

The new selection method median selection for steady-
state evolution strategies was presented and compared
for a number of test functions with other steady-state
selection methods and the generational (u, A) ES. It
showed that the non-elitist median selection enables
self-adaptation as well as or even better than all other
selection methods.

Furthermore it turned out that the use of a steady-
state evolution strategy is valuable even on a single
processor computer without parallel evaluation of the
individuals. This is true especially for multimodal
functions, where the number of parent individuals p
has to be larger than 1 to ensure a reasonable conver-
gence probability to find the global optimum.

References

[Back, 1992a] Back, T. (1992a). The interaction of
mutation rate, selection and self-adaptation within
a genetic algorithm. In Méanner, R. and Mander-
ick, B., editors, Parallel Problem Solving from Na-
ture — PPSN II, volume 2, pages 85-94, Amsterdam,
Netherlands. Elsevier Science Publishers.

[Back, 1992b] Béack, T. (1992b). A user’s guide to
genesys 1.0. Technical report, University of Dort-
mund, Department of Computer Science, System
Analysis Research Group.

[Béck et al., 1997] Back, T., Fogel, D. B., and
Michalewicz, Z., editors (1997). Handbook of Evolu-

tionary Computation. TIOP Publishing and Oxford
University Press, New York, Bristol.

[Hansen and Ostermeier, 1996] Hansen, N. and Oster-
meier, A. (1996). Adapting arbitrary normal mu-
tation distributions in evolution strategies: The
covariance matrix adaptation. In Proceedings of
the 1996 IEEE International Conference on Evo-
lutionary Computation (ICEC ’96), pages 312-317,
Nagoya, Japan. IEEE.

[Ostermeier et al., 1993] Ostermeier, A., Gawelczyk,
A., and Hansen, N. (1993). A derandomized ap-
proach to self adaptation of evolution strategies.
Technical report, Technische Universitit Berlin.

[Rechenberg, 1973] Rechenberg, 1. (1973). Opti-
mierung technischer Systeme nach Prinzipien der
biologischen Evolution. PhD thesis, TU Berlin, F.
f. Maschinenwesen. Published also in: Schriften zur
Informatik 1971.

[Rechenberg, 1994] Rechenberg, I. (1994). Evolutions-
strategie ’94, volume 1 of Werkstatt Bionik und Evo-
lutionstechnik. frommann—holzboog, Stuttgart.

[Rudolph, 1997] Rudolph, G. (1997). Evolution
strategies. In [Béck et al., 1997], pages B1.3:1-
B1.3:6.

[Schwefel, 1977] Schwefel, H.-P. (1977). Numerische
Optimierung von Computer-Modellen mittels der
Evolutionsstrategie, volume 26 of Interdisciplinary
systems research. Birkhduser, Basel.

[Schwefel, 1992] Schwefel, H.-P. (1992). Natural evo-
lution and collective optimum seeking. In Sydow,
A, editor, Computational Systems Analysis — Top-
ics and Trends, pages 5—14. Elsevier, Amsterdam.

[Smith, 1998] Smith, J. E. (1998). Self Adaptation in
Evolutionary Algorithms. PhD thesis, Faculty of
Computer Studies and Mathematics, University of
the West of England, Bristol.

[Smith and Fogarty, 1996] Smith, J. E. and Fogarty,
T. C. (1996). Self adaptation of mutation rates in
a steady state genetic algorithm. In Proceedings of
the 1996 IEEE Conference on FEvolutionary Compu-
tation, pages 318-323, New York. IEEE Press.

[Wakunda and Zell, 1997] Wakunda, J. and Zell, A.
(1997). EvA - a tool for optimization with evolu-
tionary algorithms. In Proceedings of the 23rd EU-
ROMICRO Conference, Budapest, Hungary.

