
Median-Seletion for Parallel Steady-StateEvolution StrategiesJ�urgen Wakunda and Andreas ZellUniversity of T�ubingen, Computer Siene Dept.K�ostlinstr. 6, D-72074 T�ubingenfwakunda,zellg�informatik.uni-tuebingen.deAbstrat. We desribe a new seletion sheme for steady-state evolu-tion strategies, median seletion. In steady-state algorithms, only oneindividual is generated and evaluated at eah step and is immediatelyintegrated into the population. This is espeially well suited for parallel�tness evaluation in a multiproessor environment. Previous steady-stateseletion shemes resembled (�+ �) seletion, whih has a disadvantagein self-adaptation of the mutation step length. Median seletion is similarto (�; �) seletion. Median seletion is ompared with other steady-stateseletion shemes and with (�; �) seletion on a uniproessor and on amultiproessor. It ahieves equally good or better results as the bestother seletion sheme for a number of benhmark funtions.1 IntrodutionEvolution Strategies (ES) were developed by Ingo Rehenberg and Hans-PaulShwefel (Rehenberg, 1973, Shwefel, 1977) for multi-dimensional, real-valuedparameter optimization problems. The most important property of ES is theability of self-adaptation. With self-adaptation the variane of mutations onthe objet variables are adapted at runtime and thus the optimization progressis improved. Methods for self-adaptation are for example the 1/5-suess-rule,mutative step ontrol (Rehenberg, 1994), derandomized step ontrol (Oster-meier et al., 1993) or ovariane matrix adaptation (CMA) (Hansen and Oster-meier, 1996). The seletion method plays an important role for self-adaptation.In (Shwefel, 1992) it is shown, that regarding speed of self-adaptation, ommaseletion is superior to plus seletion (see next setion). The (�+1) ES was pro-posed early by (Rehenberg, 1994), but nowadays is no longer used beause it ismissing a sheme for realizing self-adaptation (Rudolph, 1997).Median seletion,whih is presented in this paper, eliminates this disadvantage.This paper is organized as follows: in Set. 2 existing seletion methods arepresented and in Set. 3 the new median seletion is desribed; then in Set. 4the optimization results on a number of benhmark funtions and are presented,whih are disussed in Set. 5. Finally, there are the onlusions in Set. 6.



2 Seletion in Evolution Strategies2.1 Comma and Plus SeletionIn evolution strategies generally the omma or plus seletion is used, denotedas (�; �) and (�+ �). In plus seletion, the � parent individuals plus the result-ing � o�spring individuals form the seletion pool for the parents of the nextgeneration. This auses an elitist seletion where the best individual is alwaysontained in the next generation.In the (�; �) seletion, only the � o�spring individuals form the seletion pool.Thus it is possible that the best o�spring individual is worse than the best parentindividual and hene a regression happens. Nevertheless, this seletion is bettersuited for adaptation of the step-lengths of the individuals (Shwefel, 1992),beause in every generation the possibility of hanging the strategy parametersexists.2.2 Seletion in Steady-State AlgorithmsIn ontrast to generational evolutionary algorithms, where a whole o�springpopulation is reated in every generation, in steady-state ES only one or a fewindividuals are reated per step and immediately integrated bak into the parentpopulation. The term \steady-state" expresses that in one step only a smallhange takes plae and not the whole population hanges. The basi algorithmstep of steady-state ES is the following:1. reate a new individual and evaluate it with the �tness funtion,2. (a) selet an old individual whih may be replaed by the new one,(b) deide, if the old individual will be replaed.In step 2a one an hose the replaement strategy, e. g. replaement of theworst, the oldest or a randomly hosen individual. In step 2b one an hose the re-plaement ondition, e. g. replaement if the new individual is better, or unondi-tional replaement. A widely used ombination is to replae the worst individualonly if the new individual is better (B�ak et al., 1997, Glossary, Smith, 1998, p.8). This is an elitist seletion and orresponds to the (� + 1) strategy. In oursimulations, this is denoted as \standard steady-state" seletion.2.3 Steady-State Algorithm with Loal Tournament-SeletionAnother steady-state algorithm ompared here, was inspired by (Smith and Fog-arty, 1996). The idea is to generate only a small number � of o�spring individualsand selet one of them (e.g. the best) to integrate it into the main parent popu-lation. This is a kind of loal tournament seletion: (1; �). It has a high seletionpressure and is distintive like the normal omma seletion. Parallelization ofthis algorithm is easy: instead of immediately integrating an evaluated o�springindividual, � o�spring individuals are olleted in a bu�er and only the bestof them is then integrated in the parent population. In the experiments thisalgorithm is denoted as \steady-state with loal tournament seletion".



3 Median SeletionThe motivation for the design of the median seletion was to get a seletionsheme with the following properties:{ it should evaluate and integrate only one individual per step,{ it should be a non-elitist seletion, whih failitates self-adaptation; a tem-porary worsening of the average �tness should be allowed, like in the (�; �)seletion.The idea behind the median sele-
m m

l-m m

generation t generation
t+1

density

fitness

f
lim

l

Fig. 1. (�; �) seletion

tion is, that the deision, whether anindividual is integrated into the po-pulation or not, is made by a deisionfuntion without the ontext of otherindividuals. This makes it easy to re-alize a steady-state seletion. The fun-tion uses data about the �tness dis-tribution of formerly generated indi-viduals whih have already passed theseletion proess. Using this data, thebehavior of a (�; �) seletion is mod-eled by determining the �tness limit,whih separates the � best individu-als from the ��� remaining individu-als. No further replaement onditionis needed.The model of Fig. 1 was assumedfor the (�; �) seletion. Out of � par-ent individuals � o�spring individuals are generated. Thereof the � best areseleted as parents for the next generation. To do this, it is useful to sort theo�spring individuals aording to their �tness. If flim is the aeptane limit�tness value, a new o�spring individual i is integrated if fi >= flim. flim is isthe �-smallest value (for minimization) or the �-median of the �tness values ofthe o�spring. Hene the name.A model is used for the distribution of the �tness values and flim is deter-mined from it. With every newly reated and evaluated individual the modelis updated. Beause the average �tness of the population should be improvingpermanently, it is desired that relatively old �tness values are removed from themodel. Instead of modeling a partiular distribution, the distribution is repre-sented by a sample of the last np �tness values of the reated o�spring indivi-duals. For this a FIFO �tness bu�er whose elements additionally are linked insorting order, is used (Fig. 2). This is not a priority queue, as elements leave theFIFO after np steps, regardless of their �tness. This bu�er an be aessed intwo ways:1. in FIFO organization, for insertion of a new �tness value. It remains np stepsin the bu�er and then drops out.



2. in sorted order aording to the �tness value, for determining the �-median.The operation of inserting
t

f

f

f

f

f

f

f

f

f

f

f

f

t

t-1

1n -2p

n -1p

n -1pnp

3

3 2

2

t-2

t-2

t-np+1

t-n +1p

in

out

FIFO-view

FIFO-index

FIFO-index

sorted index

sorted view

}}

n (l-m)/lp
n m/lpFig. 2. The bu�er with the �tness values of thelast np reated o�spring individuals. Above theFIFO view is shown, below the aess aordingto sorted �tness values.

an element into the FIFO buf-fer is denoted in the algorithmbelow by fifo insert(). A-ess to the k-smallest elementis realized by the funtion fi-fo getSorted(k). For deter-mining the �-median, whihrepresents the aeptane limitflim, the �tness value at in-dex np � �� has to be aessedin the sorted bu�er.Additional parameters forthe median seletion are thelength of the FIFO-bu�er npand the relative rate of aep-tane rp=̂�� whih determinesthe aeptane limit in thisway: flim = �fo getSorted (rp�np). The bu�er length np or-responds to the number of o�-spring individuals of a orresponding (�; �) ES. But now we have the advantageto hose np lower than we would hose �, beause this does not primarily a�etthe seletion pressure like � and it speeds up the adaptation of the �tness aep-tane limit. (Smith and Fogarty, 1996) use a ratio of �� = 15 = 0:2. (B�ak, 1992a)uses a ratio of �� � 16 � 0:16667. In evolution strategies the ratio �� = 15100 = 0:15is often used (Ostermeier et al., 1993).The algorithm for the steady-state ES with median seletion is:t = 0;initialize(P�(0)); evaluate(P�(0));fifo init();while (not termination) doI = reombine(P�(t));I 0 = mutate(I);evaluate(I 0);flim = fifo getSorted(rp � np);if (f(I 0) better than flim) thenselet Individual to replae (Irepl)replae Irepl by I 0;endiffifo insert(f(I 0));t = t + 1;endwhile



The seletion of the individual to replae Irepl an be performed by one of thereplaement methods mentioned in Set. 2.2: replaement of the worst, oldest ora randomly hosen individual.4 EvaluationThe following funtions numbered aording to (B�ak, 1992b) were used as testfuntions (formulas are not presented here due to spae limitations):{ f2 Generalized Rosenbrok's Funtion (unimodal, orrelated variables),{ f6 Shwefel's Funtion 1.2 (unimodal),{ f9 Akley's Funtion (multimodal){ f15 Weighted Sphere (unimodal, di�erent weights for eah variable),{ f24 Kowalik (multimodal).All simulations were done with EvA (Evolutionary Algorithms) (Wakundaand Zell, 1997), our own system whih ontains a large number of variants ofgeneti algorithms and evolution strategies.In the simulations a population size of � = 20 was used onsistently to ensureomparability. This is espeially neessary for the multimodal funtions f9 andf24 in order not to onverge into a loal optimum.The simulations on one proessor were performed on PCs, the multiproessorsimulations were performed on a Hewlett Pakard V2200, a 16 proessor sharedmemory mahine, using the MPI library. The parallel version of the program runson 2 or more proessors and onsists of one master proessor for the ore ESalgorithm and one or more worker proessors for (asynhronous) �tness funtionevaluations. So, the lowest useful number of proessors in the parallel version is3. For all simulations ovariane matrix adaptation (CMA) was used for adap-tation of the strategy parameters, beause it is urrently the most powerful adap-tation method (Hansen and Ostermeier, 1996). The ompared strategies are:1. (20; �) Evolution Strategy (omma) (only sequential simulations),2. (20 + 1) steady-state ES with replae worst, if better ; the \standard steady-state"-algorithm,3. (20 + (1; �)) steady-state ES with loal tournament seletion, replaementstrategy replae oldest and replaement ondition always (seletion takesalready plae in loal tournament),4. (20+1) steady-state ES with median seletion, also with replaement strat-egy replae oldest and replaement ondition always.In simulations prior to the tests listed here, it was shown that the replaementstrategy replae oldest is advantageous in evolution strategies: it auses a non-elitist seletion (in ontrast to replae worst), whih is also the ase in (�; �)seletion.For the di�erent parameters to set for these strategies, no stati standardvalues were used, but for every funtion the optimal values were determinedseparately by an extra experiment. These are the following parameters:



{ (20; �) ES: optimal �,{ (20+ (1; �)) ES with loal tournament seletion: optimal tournament size �,{ (20 + 1) ES with median seletion: optimal bu�er size np, the aeptanelimit rp = 0:15 turned out to be good for all simulations.These values were determined only for the sequential version and were then usedalso for the parallel version. The atual values are given with eah funtion. Forthe (�; �) ES only sequential results are shown, beause it is not very well suitedfor this kind of parallelization and the other algorithms were more promising.In all experiments with the sequential algorithm 30 runs were evaluated foreah strategy with di�erent values for the random number generator. With theparallel algorithm, 20 runs were evaluated for eah strategy and every number ofproessors. Funtion f24 demanded lower omputation resoures and had loweronvergene rates, so 100 runs were made with all numbers of proessors.4.1 Generalized Rosenbrok's Funtion f2Funtion f2 was alulated with dimension n = 20, termination riterion wasreahing a �tness value less than � = 10�20 with a maximum of tmax = 270:000funtion evaluations. For the omma-ES � = 80 was hosen, for the steady-stateES with loal tournament seletion � = 5 was hosen and the bu�er size ofthe median-ES was np = 40 (the aeptane limit is rp = 0:15 for all testedfuntions).The results are shown in Fig. 3(a). Standard Steady-State and Median se-letion need nearly the same number of funtion evaluations, at 9 proessorsMedian needs about 8% more, this is the maximum di�erene. The di�ereneto loal tournament seletion is signi�antly greater: about 10% to 35% in re-lation to standard steady-state. For loal tournament with 7 and 15 proessorsnone of the 20 runs did onverge to 10�20. In general the onvergene ratio wassigni�antly worse than for the other algorithms.The omma strategy needs nearly twie as muh funtion evaluations as thesteady-state algorithms on one proessor. This is similar for the other funtionsand will be disussed in more detail in Set. 5.4.2 Shwefel's Funtion 1.2 f6Funtion f6 was alulated with dimension n = 20, � = 10�20, tmax = 100:000.The free parameters optimized were � = 70 (omma-ES); � = 5 (loal tourna-ment); np = 70 (median).The results are shown in Fig. 3(b). Here Median seletion needs only between80% and 87% of the funtion evaluations of the standard steady-state algorithm.This means that Median seletion is able to adapt the step sizes better. Loaltournament seletion is here for one proessor as good as standard steady-state,but for other number of proessors, it needs learly more funtion evaluations.The onvergene rates for loal tournament are quite surprising. With one orthree proessors, all 20 runs onverged. This is the same for the other methods,



80000

100000

120000

140000

160000

180000

200000

220000

240000

260000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(a) funtion f2
40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(b) funtion f6
20000

30000

40000

50000

60000

70000

80000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

() funtion f9
20000

30000

40000

50000

60000

70000

80000

90000

100000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

5

10

15

20

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

(d) funtion f15Fig. 3. Line graphs: omparison of numbers of funtion evaluations until the termina-tion riterion is reahed. Bar graphs: omparison of the number of not onverged runs.Details see text.



-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 3 5 7 9 11 13 15

fu
nc

tio
n 

ev
al

ua
tio

ns

number of processors

Comma
Standard Steady-State

local Tournament
Median

0

20

40

60

80

100

1 3 5 7 9 11 13 15

nu
m

be
r 

of
 n

ot
 c

on
ve

rg
ed

 r
un

s

number of processors

Comma
Standard Steady-State

local Tournament
Median

Fig. 4. Comparison for funtion f24.where this was the ase for all number of proessors. But with 5 proessors andloal tournament seletion, none of the 20 runs onverged within the 100.000evaluations.4.3 Akley's Funtion f9Funtion f9 was alulated with dimension n = 20, � = 10�10 (due to limitedomputing preision), tmax = 150:000. The free parameters were optimized to:� = 60 (omma-ES); � = 5 (loal tournament); np = 40 (median).The results are shown in Fig. 3(). The results are similar to funtion f6:Median seletion onstantly needs less evaluations than standard steady-state.Loal tournament is here a little better for one proessor, but this is not thease for more than one proessors, where it needs learly more evaluations thanthe other two parallel methods. The onvergene rate for Median were always alittle worse than for standard steady-state. Loal tournament seletion failed toadapt in many runs.4.4 Weighted Sphere Model f15Funtion f15 was alulated with dimension n = 20, � = 10�20, tmax = 160:000.The free parameters were optimized to: � = 65 (omma-ES); � = 4 (loal tour-nament); np = 40 (median).The results are shown in Fig. 3(d). Standard steady-state and the Medianmethod show almost equal behavior, the onvergene rates are 100% for bothmethods. The loal tournament method needs up to two times more funtionevaluations than the other two, onvergene rates are between 0% and 100%.4.5 Kowalik f24The dimension of funtion f24 is �xed at n = 4. The optimum of f24 is given inliterature (B�ak, 1992b) with min(f24) � f24(0:1928; 0:1908; 0:1231; 0:1358) �3:07485988 � 10�4. Termination riterion was reahing a �tness value less than



3:07486 � 10�4 with a maximum of 200.000 funtion evaluations. The followingfree parameters were hosen: � = 100 (omma-ES); � = 6 (loal tournament);np = 40 (median).Beause all ompared strategies reahed the global optimum at maximumonly in half of the runs and this funtion needed learly less evaluations thanthe others, we used 100 runs per strategy to obtain more signi�ant results.The results are shown in Fig. 4(a). The best results are ahieved by the stan-dard steady-state algorithm, whih needs about 10.000 funtion evaluations forall numbers of proessors. For some numbers of proessors, Median seletionahieves roughly the same results, but for others, it needs up to 1.5 times moreevaluations. Loal tournament onstantly needs more evaluations than the othertwo steady-state methods, the onvergene rate is worse for some number ofproessors.5 Disussion of the ResultsThe omparisons were all performed with the same number of parent individuals� = 20. Thereby the (20; �)-ES needs more funtion evaluations than the steady-state algorithms. The reason for this probably lies in the interdependene of thepopulation size and the seletion pressure of the omma strategy, whih is givenby �=�. For a �xed � and �xed seletion pressure, a large � has to be hosen. Butabove a ertain value, an inrease of � has no signi�ant e�et towards progress.In this ase, it is more eÆient to take several smaller steps with a redued sizeo�spring population.The strategy with loal tournament seletion seems to be not so suitable forevolution strategies. It fails to adapt step sizes orretly in many ases and needsmore funtion evaluations than the standard steady-state methods or even is notable to make signi�ant progress at all and the optimization stagnates.The new method Median seletion shows a better performane than the othertested methods for the funtions f6 and f9. For the other three test funtions,Median seletion shows similar performane as the standard steady-state methodor is only slightly worse for some numbers of proessors. The high omputingresoures needed for the parallel measurements together prevented a still highernumber of runs per data point.Median seletion introdues the two new parameters np and rp, but makesthe parameter � obsolete. It seems to be very robust for a �xed setting of theseparameters for all numbers of proessors.Regarding the number of funtion evaluations needed with inreasing num-ber of proessors, there is only a relatively small inrease. This is due to theoverlapping of the asynhronous handled �tness evaluations. This promises anear linear speedup and is very good to redue the omputation time for realappliations, whih need a high amount of omputing power.



6 ConlusionsThe new seletion method median seletion for steady-state evolution strategieswas presented and ompared for a number of test funtions with other steady-state seletion methods and the generational (�; �) ES. It indiated that medianseletion enables self-adaptation as well as or even better than all other sele-tion methods. The algorithm is very well suited for asynhronous, parallel �tnessevaluation, whih is the preferred parallelization method for optimization prob-lems with the need for high omputing resoures. Furthermore it turned out thatthe use of a steady-state evolution strategy is valuable even on a single proessoromputer without parallel evaluation of the individuals. This is true espeiallyfor multimodal funtions.ReferenesB�ak, T. (1992a). The interation of mutation rate, seletion and self-adaptation withina geneti algorithm. In M�anner, R. and Manderik, B., editors, Parallel ProblemSolving from Nature { PPSN II, volume 2, pages 85{94, Amsterdam, Netherlands.Elsevier Siene Publishers.B�ak, T. (1992b). A user's guide to genesys 1.0. Tehnial report, University ofDortmund, Department of Computer Siene, System Analysis Researh Group.B�ak, T., Fogel, D. B., and Mihalewiz, Z., editors (1997). Handbook of EvolutionaryComputation. IOP Publishing and Oxford University Press, New York, Bristol.Hansen, N. and Ostermeier, A. (1996). Adapting arbitrary normal mutation distri-butions in evolution strategies: The ovariane matrix adaptation. In Proeedingsof the 1996 IEEE International Conferene on Evolutionary Computation (ICEC'96), pages 312{317, Nagoya, Japan. IEEE.Ostermeier, A., Gawelzyk, A., and Hansen, N. (1993). A derandomized approah toself adaptation of evolution strategies. Tehnial report, Tehnishe Universit�atBerlin.Rehenberg, I. (1973). Optimierung tehnisher Systeme nah Prinzipien der biologis-hen Evolution. PhD thesis, TU Berlin, F. f. Mashinenwesen. Published also in:Shriften zur Informatik 1971.Rehenberg, I. (1994). Evolutionsstrategie '94, volume 1 of Werkstatt Bionik und Evo-lutionstehnik. frommann{holzboog, Stuttgart.Rudolph, G. (1997). Evolution strategies. In B�ak et al., 1997, pages B1.3:1{B1.3:6.Shwefel, H.-P. (1977). Numerishe Optimierung von Computer-Modellen mittels derEvolutionsstrategie, volume 26 of Interdisiplinary systems researh. Birkh�auser,Basel.Shwefel, H.-P. (1992). Natural evolution and olletive optimum seeking. In Sydow,A., editor, Computational Systems Analysis | Topis and Trends, pages 5{14.Elsevier, Amsterdam.Smith, J. E. (1998). Self Adaptation in Evolutionary Algorithms. PhD thesis, Faultyof Computer Studies and Mathematis, University of the West of England, Bristol.Smith, J. E. and Fogarty, T. C. (1996). Self adaptation of mutation rates in a steadystate geneti algorithm. In Proeedings of the 1996 IEEE Conferene on Evolution-ary Computation, pages 318{323, New York. IEEE Press.Wakunda, J. and Zell, A. (1997). EvA - a tool for optimization with evolutionary algo-rithms. In Proeedings of the 23rd EUROMICRO Conferene, Budapest, Hungary.


